If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+10x=18
We move all terms to the left:
3x^2+10x-(18)=0
a = 3; b = 10; c = -18;
Δ = b2-4ac
Δ = 102-4·3·(-18)
Δ = 316
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{316}=\sqrt{4*79}=\sqrt{4}*\sqrt{79}=2\sqrt{79}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{79}}{2*3}=\frac{-10-2\sqrt{79}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{79}}{2*3}=\frac{-10+2\sqrt{79}}{6} $
| 16x+10-2(8x)=3(8x+4)+2(-12x-1) | | 4(p+14)=96 | | 16x10-2(8x)=3(8x+4)+2(-12x-1) | | 3z+4z-3=18 | | x^2=-10x+20=-4 | | 40+3x+6x=180 | | 3x−4(x+1)=-2 | | -4(-7x+7)=4(4x-7)+7x | | 18s-16s-1=9 | | 7/2x+1/2x=3x+28/2+9/2x | | 14g-12g-1=3 | | 6x-6x+3=3 | | -7(d-98)=28 | | 5=6-n | | 8–8t=72 | | 20n=45 | | -6=4-d | | 3(4x-10)-6(x-1/2)=3(2x+12)-9 | | 0.4q^2+3q=0 | | 16c+17c+-20=13 | | 9y+12-4y=-3 | | (x-15)+(x+15)=90 | | 12.6f=6.1f+74.8 | | 8(1-x)=8(-5+1)-7x | | 30x-10-18x=4(3x-3)+2 | | (x-15)+(x-15)=90 | | 5(x-4)=3(×-6) | | 2(p+5)=24 | | −2(x−3)(x−11)=0 | | 17+r3=28 | | v15/6;v=13/4 | | 3(9-12x)=11-8(3x+4) |